電容耐壓不良檢測
概述
通過對NG樣品、OK樣品進(jìn)行了外觀光學(xué)檢查、金相切片分析、SEM/EDS分析及模擬試驗分析,認(rèn)為造成陶瓷電容耐壓不良原因為二次包封模塊固化過程中及固化后應(yīng)力作用造成陶瓷-環(huán)氧界面存在間隙,導(dǎo)致其耐壓水平降低。
1. 案例背景
陶瓷電容器客戶端耐壓不良。
2.分析方法
(1)通過對NG樣品、OK樣品進(jìn)行了外觀光學(xué)檢查、金相切片分析、SEM/EDS分析及模擬試驗后,發(fā)現(xiàn)NG樣品均存在明顯的陶瓷-環(huán)氧界面脫殼,產(chǎn)生了氣隙,此氣隙的存在會嚴(yán)重影響電容的耐壓水平。 從測試結(jié)果,可以明顯看到在陶瓷-環(huán)氧分離界面的裂縫位置存在明顯的碳化痕跡,且碳化嚴(yán)重區(qū)域基本集中在邊緣封裝較薄區(qū)域,而OK樣品未見明顯陶瓷-環(huán)氧界面脫殼分離現(xiàn)象。
(2)NG樣品與OK樣品結(jié)構(gòu)成分一致,未見結(jié)構(gòu)明顯異常。失效的樣品是將未封樣品經(jīng)焊接組裝灌膠,高溫固化后組成單元模塊進(jìn)行使用的。取樣品外封環(huán)氧樹脂進(jìn)行玻璃轉(zhuǎn)化溫度測試,發(fā)現(xiàn)未封樣品的外封環(huán)氧樹脂玻璃轉(zhuǎn)化溫度較低,懷疑因為灌膠的高溫超過了陶瓷電容的環(huán)氧樹脂封體的玻璃轉(zhuǎn)化溫度,達(dá)到了其粘流態(tài),導(dǎo)致陶瓷基體和環(huán)氧界面脫粘產(chǎn)生氣隙。隨著環(huán)氧樹脂固化冷卻過程體積收縮,產(chǎn)生的內(nèi)應(yīng)力以殘余應(yīng)力的形式保留在包封層中,并作用于陶瓷-環(huán)氧界面,劣化界面的粘結(jié),此時的形變就很難恢復(fù)。然后在外部電場力(耐壓加電測試)的作用下,在間隙路徑上產(chǎn)生了弱點擊穿。
3. 失效模式分析
(1)在電場作用下,陶瓷電容器的擊穿 破壞遵循弱點擊穿理論,而局部放電是產(chǎn)生弱點破壞的根源。除因溫度冷熱變化產(chǎn)生熱應(yīng)力導(dǎo)致開裂外,對于環(huán)氧包封型高壓陶瓷電容,無論是留邊型還是滿銀型電容都存在著電極邊緣電場集中和陶瓷-環(huán)氧的結(jié)合界面等比較薄弱的環(huán)節(jié)。環(huán)氧包封陶瓷電容器由于環(huán)氧樹脂固化冷卻過程體積收縮,產(chǎn)生的內(nèi)應(yīng)力以殘余應(yīng)力的形式保留在包封層中,并作用于陶瓷-環(huán)氧界面,劣化界面的粘結(jié)。在電場作用下,組成高壓陶瓷電容瓷體的鈣鈦礦型鈦酸鍶鐵類陶瓷(SPBT)會發(fā)生電機械應(yīng)力,產(chǎn)生電致應(yīng)變。當(dāng)環(huán)氧包封層的殘余應(yīng)力較大時,二者聯(lián)合作用極可能造成包封與陶瓷體之間脫殼,產(chǎn)生氣隙,從而降低電壓水平。
(2)介質(zhì)內(nèi)空洞:導(dǎo)致空洞產(chǎn)生的主要因素為陶瓷粉料內(nèi)的有機或無機污染、燒結(jié)過程控制不當(dāng)?shù)取?斩吹漠a(chǎn)生極易導(dǎo)致漏電,而漏電又導(dǎo)致器件內(nèi)局部發(fā)熱,進(jìn)一步降低陶瓷介質(zhì)的絕緣性能從而導(dǎo)致漏電增加。該過程循環(huán)發(fā)生,不斷惡化,導(dǎo)致其耐壓水平降低。
(3)包封層環(huán)氧材料因素:一般包封層厚度越厚,包封層破壞所需的外力越高。在同樣電場力和殘余應(yīng)力的作用下,陶瓷基體和環(huán)氧界面的脫粘產(chǎn)生氣隙較為困難。另外固化溫度的影響,隨著固化溫度的提高,高壓陶瓷電容的擊穿電壓會越高,因為高溫固化時可以較快并有效地減少殘余應(yīng)力。隨著整體模塊灌膠后固化的高溫持續(xù),當(dāng)達(dá)到或超過陶瓷電容器外包封層環(huán)氧樹脂的玻璃轉(zhuǎn)化溫度,達(dá)到了粘流態(tài),陶瓷基體和環(huán)氧界面的脫粘產(chǎn)生了氣隙,此時的形變就很難恢復(fù),這種氣隙會降低陶瓷電容的耐壓水平。
(4)機械應(yīng)力裂紋:陶瓷體本身屬于脆性較高的材料,在產(chǎn)生和流轉(zhuǎn)過程中較大的應(yīng)力可能造成應(yīng)力裂紋,導(dǎo)致耐壓降低。常見的應(yīng)力源有:工藝過程電路板流轉(zhuǎn)操作;流轉(zhuǎn)過程中的人、設(shè)備、重力等因素;元件接插操作;電路測試;單板分割;電路板安裝;電路板定位鉚接;螺絲安裝等。